Ti 84 Plus Doom Game Cheats
The TI-84 Plus is one of Texas Instruments' more popular graphing calculators, and there is a wide range of applications and games available to install on it. The TI-84 Plus is completely compatible with all functions of its predecessor, the TI-83 Plus, giving it a huge library of possibilities. The TI-84 Plus is equipped with a USB port, making it a snap to install games and other applications.
May 21, 2017. Ti 84 Plus Pokemon. How to install doom on ti 84 plus? ZDoom is the game i have on my calculator. Install doom on ti 84. ImAwesome64 TI-84 Plus C Silver Edition. Installing games on Ti-84 Plus CE? DOOM Description ****NEW UPDATE**** Be the first in school to experience newer graphics. Doom86, a TI-86 Basic game self-described as a 'Doom-like game' was released in early March of 2000. A relatively polished assembler release for TI-83 and TI-83+, supporting multiple weapons, multiple levels, savestates, and OS multitasking. Later remastered as zDoom (no relation) to run on the TI-84+ as well. Doom85 Doom486. Dec 12, 2011. If it seems like I'm a little biased towards gaming hacks, it's because I am. There's just something. “Mrakoplaz” made news on Omnimaga and around the world when he successfully ported the real Doom to the TI-Nspire. Of course, an Gameboy emulator for the TI-84 wasn't enough for Calc84mania.
Download the TI Connect software to your computer from the Texas Instruments website. Double-click on the file once it has been downloaded to install the software on your computer.
Turn on your TI-84 Plus calculator and plug the mini-USB cable into both the TI-84 Plus and your computer.
Download the ION software from the TICalc website. Once the download is complete, extract the contents of the file to a directory on your desktop. If any dialogue boxes pop up during the extraction process, select “Yes.” Once all files have been extracted, select all of the files, right-click on them, and select “Send to TI Device.”
Press the 'PRGM' button on your TI-84 Plus and execute the ION file, which should be the first file listed. You will receive a confirmation message saying “ION installed.”
Press the “2nd” key, then the “plus” key, then “2” and then “7,” and then find the three programs starting with “Ion” and press the “Enter” key while each is highlighted. This will archive the ION software. To verify the step was successful, check for an asterisk (“*”) next to each of the files.
Download the games you'd like from the TICalc website. Once you've downloaded and extracted the games, right-click on them and select “Send to TI Device..,” being sure to select “Archive” as the destination.
Items you will need
Computer
TI-84 Plus
Mini-USB cable (typically provided with the TI-84 Plus)
Tips
The TI Connect software also allows you to back up all of the content on your TI-84 Plus calculator. To do this, start up the TI Connect software, click the “Backup” icon, and follow the on-screen instructions.
Acpi pnpb006 driver windows 7 free download. ACPI PNPB006 device driver for Windows 7, XP, 10, 8, and 8.1. ACPI PNPB006 Free Driver Download. World's most popular driver download site.
Warnings
Keep in mind that you will have to download the games that you want to install on your TI-84 Plus onto your computer first.
Video of the Day
Doom Game
- Calculator image by Alla Podkopaeva from Fotolia.com
More Articles
Type | Programmable, Graphing, Symbolic |
---|---|
Manufacturer | Texas Instruments |
Introduced | 2007 |
Discontinued | 2010 |
Predecessor | TI-89 Titanium Voyage 200 |
Successor | TI-Nspire CAS with Touchpad |
Calculator | |
Entry mode | DAL, MathPrint |
Precision | 14 |
Display type | |
Display size | 320x240 (3.5″ diagonal) |
Programming | |
Programming language(s) | TI-Nspire BASIC, Lua |
User memory | 32 MB NAND Memory (20 MB user-accessible) 32 MB SDRAM (16 MB user-accessible) |
Firmware memory | 512 KB NOR ROM |
Other | |
Power supply | 4 AAA's |
Weight | 252 grams, 8.9 oz |
Dimensions | 201 mm × 99 mm × 22 mm (7.9 in × 3.9 in × 0.85 in) |
Type | Programmable, Graphing |
---|---|
Manufacturer | Texas Instruments |
Introduced | 2007 |
Discontinued | 2010 |
Predecessor | TI-84 Plus TI-84 Plus Silver Edition |
Calculator | |
Entry mode | DAL, MathPrint |
Precision | 14 |
Display type | |
Display size | 320x240 (3.5″ diagonal) |
Programming | |
Programming language(s) | TI-Nspire BASIC, Lua |
User memory | 32 MB NAND Memory (20 MB user-accessible) 32 MB SDRAM (16 MB user-accessible) |
Firmware memory | 512 KB NOR ROM |
Other | |
Power supply | 4 AAA's |
Weight | 252 grams, 8.9 oz |
Dimensions | 201 mm × 99 mm × 22 mm (7.9 in × 3.9 in × 0.85 in) |
Type | Programmable, Graphing, Symbolic |
---|---|
Manufacturer | Texas Instruments |
Introduced | 2010 |
Predecessor | TI-Nspire CAS with Clickpad |
Successor | TI-Nspire CX CAS |
Calculator | |
Entry mode | DAL, MathPrint |
Precision | 14 |
Display type | |
Display size | 320x240 (3.5″ diagonal) |
Programming | |
Programming language(s) | TI-Nspire BASIC, Lua |
User memory | 32 MB NAND Memory (20 MB user-accessible) 32 MB SDRAM (16 MB user-accessible) |
Firmware memory | 512 KB NOR ROM |
Other | |
Power supply | 4 AAA's |
Weight | 280 grams, 9.9 oz |
Dimensions | 198 mm × 99 mm × 22 mm (7.8 in × 3.9 in × 0.85 in) |
Type | Programmable, Graphing |
---|---|
Manufacturer | Texas Instruments |
Introduced | 2010 |
Predecessor | TI-Nspire with Clickpad |
Successor | TI-Nspire CX |
Calculator | |
Entry mode | DAL, MathPrint |
Precision | 14 |
Display type | |
Display size | 320x240 (3.5″ diagonal) |
Programming | |
Programming language(s) | TI-Nspire BASIC, Lua |
User memory | 32 MB NAND Memory (20 MB user-accessible) 32 MB SDRAM (16 MB user-accessible) |
Firmware memory | 512 KB NOR ROM |
Other | |
Power supply | 4 AAA's |
Weight | 280 grams, 9.9 oz |
Dimensions | 198 mm × 99 mm × 22 mm (7.8 in × 3.9 in × 0.85 in) |
Type | Programmable, Graphing, Symbolic |
---|---|
Manufacturer | Texas Instruments |
Introduced | 25 February 2011 |
Predecessor | TI-Nspire CAS with Touchpad |
Calculator | |
Entry mode | DAL, MathPrint |
Precision | 14 |
Display type | |
Display size | 320x240 (3.2″ diagonal) |
Programming | |
Programming language(s) | TI-Nspire BASIC, Lua |
User memory | 128 MB NAND Memory (100 MB user-accessible) 64 MB SDRAM (64 MB user-accessible) |
Firmware memory | 512 KB NOR ROM |
Other | |
Power supply | 3.7L1230SP Li-Ion |
Weight | 242 grams (8.5 oz) |
Dimensions | 191 mm × 86 mm × 15 mm (7.5 in × 3.4 in × 0.60 in) |
Type | Programmable, Graphing |
---|---|
Manufacturer | Texas Instruments |
Introduced | 25 February 2011 |
Predecessor | TI-Nspire with Touchpad |
Calculator | |
Entry mode | DAL, MathPrint |
Precision | 14 |
Display type | |
Display size | 320×240 (3.2″ diagonal) |
Programming | |
Programming language(s) | TI-Nspire BASIC, Lua |
User memory | 128 MB NAND Memory (100 MB user-accessible) 64 MB SDRAM (64 MB user-accessible) |
Firmware memory | 512 KB NOR ROM |
Other | |
Power supply | 3.7L1230SP Li-Ion |
Weight | 242 grams (8.5 oz) |
Dimensions | 191 mm × 86 mm × 15 mm (7.5 in × 3.4 in × 0.60 in) |
Type | Programmable, Graphing |
---|---|
Manufacturer | Texas Instruments |
Introduced | March 2019 |
Predecessor | TI-Nspire CX |
Calculator | |
Entry mode | DAL, MathPrint |
Precision | 14 |
Display type | |
Display size | 320×240 (3.2″ diagonal) |
Programming | |
Programming language(s) | TI-Nspire BASIC, Lua |
User memory | 128 MB NAND Memory (100 MB user-accessible) 64 MB SDRAM (64 MB user-accessible) |
Firmware memory | 512 KB NOR ROM |
Other | |
Power supply | 3.7L1230SP Li-Ion |
Weight | 242 grams (8.5 oz) |
Dimensions | 191 mm × 86 mm × 15 mm (7.5 in × 3.4 in × 0.60 in) |
Type | Programmable, Graphing, Symbolic |
---|---|
Manufacturer | Texas Instruments |
Introduced | March 2019 |
Predecessor | TI-Nspire CX CAS |
Calculator | |
Entry mode | DAL, MathPrint |
Precision | 14 |
Display type | |
Display size | 320x240 (3.2″ diagonal) |
Programming | |
Programming language(s) | TI-Nspire BASIC, Lua |
User memory | 128 MB NAND Memory (100 MB user-accessible) 64 MB SDRAM (64 MB user-accessible) |
Firmware memory | 512 KB NOR ROM |
Other | |
Power supply | 3.7L1230SP Li-Ion |
Weight | 242 grams (8.5 oz) |
Dimensions | 191 mm × 86 mm × 15 mm (7.5 in × 3.4 in × 0.60 in) |
The TI-Nspire is a graphing calculator made by Texas Instruments which was released in July 2007. The original TI-Nspire was developed out of the TI PLT SHH1 prototype calculator (which itself was derived from the Casio ClassPad 300), the TI-92 series of calculators released in 1995, and the TI-89 series of calculators released in 1998.[1]The TI-Nspire features a non-QWERTY keyboard and a different key-by-key layout compared to its predecessors. The TI-Nspire allows users to swap out the existing removable keypad with a functional copy of the TI-84 Plus series keypad. The TI-Nspire series I/O has a connector for the TI-Nspire Lab Cradle, another that serves as a connector for TI's wireless network adapter, and a Mini-USB connector for transferring data. The TI-Nspire series is available with and without a computer algebra system.
In 2011, Texas Instruments released the CX line of their TI-Nspire calculators which effectively replaced the previous generation. The updates included improvements to the original's keyboard layout, an addition of a rechargeable lithium-ion battery, 3D graphing capabilities and reduced form factor.[2] TI got rid of the removable keypad with this generation and therefore, the TI-84 compatibility mode.
In 2019, the TI-Nspire CX II was added and features a boost in clock speed and improvements to the existing operating system.
- 1Versions
- 2TI-Nspire Software
- 4OS versions
Versions[edit]
The TI-Nspire series uses a different operating system compared to Texas Instruments' other calculators. The TI-Nspire includes a file manager that lets users create and edit documents. As a result of being developed from PDA-esque devices, the TI-Nspire retains many of the same functional similarities to a computer.
Ti 84 Plus Doom Game Cheats Download
TI-Nspire[edit]
The standard TI-Nspire calculator is comparable to the TI-84 Plus in features and functionality. It features a TI-84 mode by way of a replaceable snap-in keypad and contains a TI-84 Plus emulator. The likely target of this is secondary schools that make use of the TI-84 Plus currently or have textbooks that cover the TI-83 (Plus) and TI-84 Plus lines, and to allow them to transition to the TI-Nspire line more easily.
The TI-Nspire started development in 2004.[citation needed] It uses a proprietary SoC of the ARM9 variant for its CPU. The TI-Nspire and TI-Nspire CAS calculators have 32 MB of NAND Flash, 32 MB of SDRAM, and 512 KB of NOR Flash[3]. However, only 20 MB and 16 MB are user-accessible respectively[4]
The TI-Nspire released in two models; a numeric and CAS version. The numeric is similar in features to the TI-84, except with a bigger and higher resolution screen and a full keyboard. The feature that the numeric lacks is the ability to solve algebraic equations such as indefinite integrals and derivatives. To fill in the gap of needing an algebraic calculator, Texas Instruments introduced the second model with the name TI-Nspire CAS. The CAS is designed for college and university students, giving them the feature of calculating many algebraic equations like the Voyage 200 and TI-89 (which the TI-Nspire was intended to replace). However, the TI-Nspire does lack part of the ability of programming and installing additional apps that the previous models had, although a limited version of TI-BASIC is supported, along with Lua in later versions. C and assembly are only possible by Ndless.
Because the TI-Nspire lacks a QWERTY keyboard, it is acceptable for use on the PSAT, SAT,[5]SAT II, ACT,[6]AP, and IB Exams.
TI-Nspire CAS[edit]
The TI-Nspire CAS calculator is capable of displaying and evaluating values symbolically, not just as floating-point numbers. It includes algebraic functions such as a symbolic differential equation solver: deSolve(..), the complex eigenvectors of a matrix: eigVc(..), as well as calculus based functions, including limits, derivatives, and integrals. For this reason, the TI-Nspire CAS is more comparable to the TI-89 Titanium and Voyage 200 than to other calculators. Unlike the TI-Nspire, it is not compatible with the snap-in TI-84 Plus keypad. It is accepted in the SAT and AP exams (without a QWERTY keyboard) but not in the ACT,[6] IB or British GCSE and A level. The body color is grey.
TI-Nspire Touchpad[edit]
On 8 March 2010, Texas Instruments announced new models of the TI-Nspire Touchpad and TI-Nspire CAS Touchpad graphing calculators. In the United States the new calculator was listed on the TI website as a complement to the TI-Nspire with Clickpad, though it was introduced as a successor to the previous model in other countries. The calculators were released alongside the OS 2.0 update, which featured a number of updates to the user interface and new functions.
The keyboards on the touchpad keypads featured a different and less crowded key layout along with the touchpad, which is used for navigation. The touchpad keypads are also compatible with older calculators that are running OS 2.0 or newer. The new calculators that were shipped with touchpad keypads supported an optional rechargeable battery. The second generation is also available in two models, the TI-Nspire Touchpad and TI-Nspire CAS Touchpad, and each model has maintained the color of itself, with the normal one being white and black while the CAS is black and gray.
To reduce theft of school-owned TI-Nspire calculators, Texas Instruments also introduced the EZ-Spot Teacher Packs with a bright, easy-to-spot, 'school bus yellow' frame and slide case. The hardware of both versions are the same, with the only differences being cosmetic. The TI-Nspire calculators that were released after the touchpad TI-Nspires also have EZ-Spot versions.
TI-Nspire CX and TI-Nspire CX CAS[edit]
In 2011, the TI-Nspire CX and CX CAS were announced as updates to TI-Nspire series. They have a thinner design with a thickness of 1.57 cm (almost half of the TI-89), a 1200 mAh (1060mAh before 2013) rechargeable battery (wall adapter is included in the American retail package), a 320 by 240 pixel full color backlit display (3.2' diagonal), and OS 3.0 which includes features such as 3D graphing.[7]
The CX series were released in the same time frame as the Casio Prizm (fx-CG10/20),[8] Casio's color screen graphing calculator with similar features.
The TI-Nspire CX series differ from all previous TI graphing calculator models in that the CX series are the first to use a rechargeable 1060 mAh Lithium-Ion battery (upgraded to 1200 mAh in 2013 rev.). The device is charged via a USB cable. TI claims that the battery requires four hours to charge, that a full charge powers the device for up to two weeks under normal daily use, and that the battery should last up to 3 years before it requires replacement. The battery is user-replaceable.[7]
With the exception of interchangeable TI-84 keypads, the CX series retain all features of the previous TI-Nspire models. The colors of the calculator are still the same as those of the TI-Nspire models; the CX is white and dark blue, while the CX CAS is gray and black. The external connectors have changed slightly. The mini-USB port, located at the center of the top of the TI-Nspire series, has moved to the right on the CX series. On the CX series, TI added a second port immediately left of the mini-USB port, for a new wireless module. The new wireless TI-Nspire Navigator adapter, which allows teachers to monitor students and send files, is not compatible with the previous TI-Nspire models. The third port, located at the bottom of the handheld, is for the TI Charging Dock and Lab Cradle. The keypad layout is very similar to that of the TI-Nspire Touchpad.
Both models have 100 MB of user memory and 64 MB of RAM. The retail package comes in a plastic blister case and doesn't have the full manual, while the teachers edition comes in a box with a TI-Nspire CX poster for classrooms and the full manual (in English and French in the US). Both devices ship with the student/teacher software for Windows/Mac OS X. According to Texas Instruments, The CX is accepted in SAT, IB, AP, ACT and British GCSE and A level exams. The CX CAS is only accepted on SAT and AP.
Chinese Versions[edit]
Four models aimed for the Chinese market were launched, with specialized features. All four models have Chinese labeled keyboards. The CX-C and CX-C CAS models are similar to CX and CX CAS, but included a concise Chinese-English dictionary. The CM-C and CM-C CAS are cheaper, featured a more stream-lined design, but have only 32MB of RAM and no port for the wireless module[9].The systems of the Chinese versions are not interchangeable with those of the international models.
TI-Nspire CX II and TI-Nspire CX II CAS[edit]
In 2019, Texas Instruments introduced the TI-Nspire CX II and TI-Nspire CX II CAS.[10] They feature a slightly different operating system with several enhancements and slightly improved hardware.
European Versions[edit]
Like China, the continent of Europe also has models aimed for its market. These calculators include a '-T' after the CX. The CX-T II and CX-T II CAS both have different body color designs than their North American counterparts. One of the main feature differences in the European versions is the inclusion of an exact math engine in the non-CAS version. European models also omit the WiFi adapter port from the top of the calculator.
TI-Nspire Software[edit]
Texas Instruments offers several different versions of software for their calculators. They offer CAS and non-CAS versions of their student and teacher software. This software allows users to share results with classmates and teachers and gives the user an emulated version of the TI-Nspire. TI also offers a computer link software for connecting their handheld to their computer to transfer documents. The software allows for the syncing of documents to and from the calculator and/or computer. This software requires a license in order to be used.
With the release of OS 3.0, the Lua scripting language is supported, allowing 3rd party programs to be run without the need of exploits.[11][12]There are currently more than 100 third-party programs and functions for the Nspire that introduce new functionality, like Laplace Transform, Fourier Transform and 3rd and 4th degree differential equations, that aren't included by default.[13]
Lab Cradle[edit]
The TI-Nspire Lab Cradle is a Calculator-Based Laboratory system introduced in 1994. It is a portable data collection device for the life sciences. The CBL system was replaced in 1999 by the CBL 2. The TI-Nspire Lab Cradle has three analog and two digital inputs with a sampling rate of up to 100,000 readings per second. The cradle also has 32 MB of storage space to store sensor data.[14]The Lab Cradle allows the TI-Nspire series to communicate with older Calculator-Based Laboratory systems that previous TI calculators used (TI-73 series, TI-82, TI-83 series, TI-85, and TI-86).[15]
The TI-Nspire Lab Cradle used the rechargeable battery of the TI-Nspire and support three different charging options: wall adapter, USB cable to computer and TI-Nspire Cradle Charging Bay. The TI-Nspire Lab Cradle is marketed by Texas Instruments and developed as part of an ongoing business venture between TI and Vernier Software & Technology of Portland, Oregon.
TI-Nspire Navigator System[edit]
The Navigator system allows teachers to connect multiple TI-Nspire calculators to a computer through the TI-Nspire Access Point and TI-Nspire Navigator Wireless Cradles. The system includes the TI-Nspire cradle charging bay and the main system which looks like a wireless router. The Navigator system was first available when the first generation Nspires were launched, but when the TI-Nspire CX and CX CAS were released, a new wireless adapter was announced that is smaller but not compatible with the TI-Nspire and TI-Nspire Touchpad.
Press-to-Test[edit]
Press-to-Test is a feature that restricts access to the user's documents and certain features of the calculator for a limited time. Its intended purpose is to prevent cheating on tests and exams. Press-to-Test is enabled by pressing a certain button combination when turning on the calculator. The features that are blocked (for example 3D graphs and drag & drop for graphs) can be selectively enabled, but access to existing documents is always prohibited. When the handheld is running in Press-to-Test mode, an LED on top of it blinks to indicate that Press-to-Test hasn't been disabled. Press-to-Test can only be disabled by connecting to another calculator or a computer with TI-Nspire compatible software installed. Removing the batteries or pressing the reset button will not disable it.
Ndless[edit]
Ndless (alternatively stylized Ndl3ss) is a third-party jailbreak for the TI-Nspire calculators that allows native programs, such as C, C++ and ARM assembly programs, to run. Ndless was developed initially by Olivier Armand and Geoffrey Anneheim and released in February 2010 for the Clickpad handheld.[16] Organizations such as Omnimaga and TI-Planet promoted Ndless and built a community around Ndless and Ndless programs. With Ndless, low-level operations can be accomplished, for example overclocking, allowing the handheld devices to run faster. Downgrade prevention can be defeated as well. In addition, Game Boy, Game Boy Advance, and Nintendo Entertainment Systememulators exist for the handhelds with Ndless.[17]Major Ndless-powered programs also include a port of the game Doom.[18] Unlike Lua scripts, which are supported by Texas Instruments,[19]Ndless is actively counteracted by TI. Each subsequent OS attempts to block Ndless from operating.[20]
Technical Specifications[edit]
Texas Instruments developed their own proprietary System-On-Chip from the ARM9 32-bit processors. The first generation of the TI-Nspire is based on LSI Corporation's (now Broadcom Inc.) 'Zevio' design while the CX and CX II generation is built with Toshiba's Application-Specific Integrated Circuit design.
Most Texas Instruments calculators contain only a non-volatileread-only memory called NAND Flash and a volatilerandom-access memory called Synchronous dynamic random-access memory. The NAND Flash is not executable but contains parts of the operating system. However, the TI-Nspire also uses NOR ROM to store boot instructions for the operating system. Texas Instruments most likely did this to free up the NAND ROM, and SDRAM in the calculator to be used by the user and operating system.[9] The NAND ROM and SDRAM are used to store user and operating system documents.
Previous Texas Instruments calculators had a backup button cell battery used to maintain user information, system information and time and date, between battery changes. This allows a user to keep their information when a battery is removed. Because the TI-Nspire lacks this backup battery, the SDRAM content is deleted whenever the user has to swap the battery out. This necessitates that the calculator load the operating system and file structure from the NAND Flash to the SDRAM, causing a longer loading time.
Despite the overall performance increase between versions of the TI-Nspire, performance differences exist between the The TI-Nspire CX II version lacks 10+ MB of storage space compared to its predecessor. The TI-Nspire CM-C and CM-C CAS, the Chinese versions CX and CX CAS, respectively, are cheaper and have an updated design, but have only 32MB of RAM and no port for the wireless module. [9]
TI-Nspire CAS & Non-CAS | TI-Nspire CX CAS & Non-CAS | TI-Nspire CX II CAS & Non-CAS | |
---|---|---|---|
Display | 320x240 - 4 bit greyscale LCDDot-Matrix | 320x240 or 240x320 - 16 bit color LCD | 320x240 or 240x320 - 16 bit color LCD |
CPU | ARM9-26EJ-S 90 MHz/120 MHz | ARM9-26EJ-S 132 MHz[21] | ARM9-26EJ-S 396 MHz |
SDRAM | 32 MB (32 MB user-accessible)[22] | 64 MB (64 MB user-accessible) | 64 MB (64 MB user-accessible) |
NAND Memory | 32 MB (15 MB user-accessible)[23] | 128 MB (100 MB user-accessible)[24] | 128 MB (90+ MB user-accessible)[25] |
Flash ROM | 512 KB NOR ROM | 512 KB NOR ROM | 512 KB NOR ROM |
Link capability | Mini-USB Sync TI-Nspire Lab Cradle Wireless Network Adapter | Mini-USB Sync TI-Nspire Lab Cradle Wireless Network Adapter | Mini-USB Sync TI-Nspire Lab Cradle Wireless Network Adapter |
I/O | Interchangeable Keypads TI-84 Keypad TI-Nspire Keypad | 71 Switch Keypad | 71 Switch Keypad |
Power | 4×AAA batteries | Rechargeable 1200 mAhlithium-ion battery | Rechargeable 1200 mAhlithium-ion battery |
Release | 2007, 2010 (Touchpad version) | 2011 | 2019 |
OS versions[edit]
- 1.0.491 (June 2006) - Prototypes
- 1.0.526 (September 2006) - Prototypes
- 1.1.8916 (Late 2006 / Early 2007) - Prototypes
- 1.1.9170 (7 May 2007)
- 1.1.9253 (non-CAS version)
- 1.2.2394 (30 August 2007)
- 1.3.2438 (8 January 2008)
- 1.4.11643 (9 July 2008)
- 1.6.4295 (29 October 2008, released 9 December 2008)
- 1.7.2741 (19 May 2009, released 6 June 2009)
- 1.8 (build 80) Dev (Late 2009) - Prototypes
- 2.0.0.1188 (5 March 2010)
- 2.0.1.60 (3 May 2010)
- 2.1.0.631 (17 July 2010)
- 3.0.1.1753 (April 2011)
- 3.0.2.1791 (May 2011)
- 3.0.2.1793
- 3.1.0.392 (7 September 2011)
- 3.2.0.1212 (June 2012)
- 3.2.0.1219 (June 2012)
- 3.2.3.1233 (December 2012)
- 3.2.4.1237
- 3.6.0.546 (December 2013)
- 3.6.0.550 (February 2014)
- 3.9.0.461 (May 2014)[26]
- 3.9.0.463 (June 2014) - highest version for the original models
- 3.9.1.38
- 4.0.0.235 (March 2015)
- 4.0.3.29 (December 2015)
- 4.2.0.532 (February 2016)
- 4.3.0.702 (August 2016)
- 4.4.0.532 (January 2017)
- 4.5.0.1180 (September 2017)
- 4.5.1.12 (April 2019) - highest version for the CX models
- 5.0.0 (April 2019)
The TI-Nspire CX/CX CAS calculators are now running the OS version 4.5.1.12, released in April 2019. The TI-Nspire CX II/CX II CAS are running version 5.0.0. The operating system has been updated frequently since 2007 (partly due to bugs and missing functions, and also to patch jailbreak exploits), one year after its release in 2006. Version 2.0, 3.0, 4.0, and 5.0 were major upgrades.
Added features in OS 2.0[edit]
- Scratchpad (Easily and quickly use a calculator and graph)
- New, more organized home screen
- Calculator application changes
- Solving of systems of equations (linear or non-linear)
- Complex and real roots of polynomials
- Derivative at a point
- Remainder, quotient, coefficients, and degree of polynomials
- Greatest common divisor
- Central difference quotient with steps
- Creation of a zero matrix
- New programming capabilities
- Ability to separate a programming page from a calculator page
- Request and RequestStr I/O functions
- Output text
- Graphs application changes
- Can toggle table of values
- Can hide object selection guides
- Custom sequence graphs
- Zoom to decimal
- Analyze Graph menu
- Zero
- Minimum
- Maximum
- Intersection
- Inflection
- dy/dx
- Integral
- New geometry application is simply a graphing application that can only make shapes
- Data and Statistics application changes
- Ability to add X and Y variables with frequency
- Notes application changes
- Calculations in the Notes application,
- New graph settings page
Added features in OS 3.0[edit]
Images can be included in TI-Nspire documents using the computer software. They can then be displayed on the Nspire calculators and in full color on the Nspire CX calculators. Graphs can be drawn on top of the images. A data collection application is included with the OS, for use with the Lab Cradle. 3D graphing is supported, as well as differential equations. Other features were also added, including improvements to functions that are related to statistics.[27] OS 3.0 also adds the ability to run programs that are written in Lua.[28][12] OS 3.0.1 introduced a number of bugs,[29] but most of these have been fixed as of 3.0.2.[30] In OS 3.2, conic equations in standard formats can be graphed and a new chemistry feature, Chem Box, allows users to write chemical notations.[31] OS 3.2 also saw the inclusion of the Chipmunk physics engine for use in Lua programs.[32] In OS 3.9, the area between curves can now be calculated on the graph bar.[33]
Added features in OS 4.0[edit]
An indicator now displays the angle mode (Degrees, Radians or Gradians) in effect for the current application. In window settings on graphs, exact inputs such as 7/3 or 2*π can now be used for input of custom window settings.[34]
Added features in OS 5.0[edit]
- Animated Path plot
- Modernized user interface
- Dynamic coefficient values
- Points by coordinates
- Tick-mark labels
- TI-Basic programming enhancements
- Simplified Disable CAS (CAS model only)
- deSolve wizard (CAS model only)
See also[edit]
Notes[edit]
References[edit]
- ^'DATAMATH'. www.datamath.org. Retrieved 14 July 2019.
- ^'Texas Instruments TI-Nspire CX CAS'. Datamath Calculator Museum.
- ^'Texas Instruments TI-Nspire KBD EZ-Spot'. DATAMATH. 24 June 2008. Archived from the original on 17 October 2008. Retrieved 12 July 2019.
- ^'TI-Nspire with Touchpad: Bid Specifications'. Texas Instruments. 3 December 2010. Archived from the original on 3 December 2010. Retrieved 11 July 2019.
- ^'SAT - Calculator Policy'. The College Board. Retrieved 5 March 2013.
- ^ ab'ACT - Can I use a calculator?'(PDF). ACT, Inc. Retrieved 5 March 2013.
- ^ ab'TI-Nspire™ CX CAS Handheld'. Retrieved 28 June 2013.
- ^Casio Education: PRIZM - Graphing CalculatorArchived 7 January 2017 at the Wayback Machine
- ^ abc'Hardware - Hackspire'. hackspire.org. Retrieved 12 July 2019.
- ^'Introducing TI-Nspire™ CX II-T graphing calculators'.
- ^'Lua Programming Environment on the TI-Nspire Found'. ticalc.org. Retrieved 18 July 2011.
- ^ ab'TI-Nspire™ Technology - Lua Scripting'. Texas Instruments. Retrieved 21 August 2011.
- ^'TI-Nspire BASIC Math Programs'. ticalc.org. Retrieved 28 June 2013.
- ^'TI-Nspire Lab Cradle Vernier'. www.vernier.com. Retrieved 14 July 2019.
- ^'Datamath Calculator Museum'. www.datamath.org. Retrieved 11 July 2019.
- ^'Nspire Models Opened to Third-Party Development'. ticalc.org. Retrieved 10 June 2014.
- ^'Ndless for TI-Nspire'. Retrieved 3 June 2014.
- ^Sheffer, Sam. 'TI-Nspire calculator: yes, it plays Doom'. engadget. Retrieved 10 June 2014.
- ^'Lua Scripting in TI-Nspire™'. ti.com. Retrieved 13 June 2014.
- ^timothy (18 July 2010). 'TI vs. Calculator Hobbyists, Again'. slashdot. Retrieved 3 December 2018.
- ^'Teardown Tuesday: Graphing Calculator'. www.allaboutcircuits.com. Retrieved 15 July 2019.
- ^'IC List'. www.datamath.org. Retrieved 15 July 2019.
- ^'TI-Nspire™ CAS Handheld with Touchpad'. education.ti.com. Retrieved 15 July 2019.
- ^'TI-Nspire™ CX CAS Handheld'. education.ti.com. Retrieved 15 July 2019.
- ^'TI-Nspire™ Specifications'. education.ti.com. Retrieved 15 July 2019.
- ^'Nspire 3.9 available, blocks 2.6+ Ndless'. Omnimanga.
- ^'TI-Nspire™ Technology Version 3.0 Release Notes'(PDF). Texas Instruments. April 2011. Retrieved 1 August 2011.
- ^'Lua Programming Environment on the TI-Nspire Found'. ticalc.org. Retrieved 18 July 2011.
- ^'Beware Installing TI-Nspire OS v.3'. ticalc.org. Retrieved 21 August 2011.
- ^'TI-Nspire OS 3.0.2 Released'. ticalc.org. Retrieved 21 August 2011.
- ^'TI-Nspire™ Technology Version 3.2 Release Notes'(PDF). education.ti.com. Retrieved 11 June 2012.[permanent dead link]
- ^http://www.inspired-lua.org/upload/TI-Nspire_Scripting_API_Reference_Guide_EN.pdf
- ^'What's New in Version 3.9'. education.ti.com. Texas Instruments. Retrieved 7 July 2014.
- ^'What's New in Version 4.0'. education.ti.com. Texas Instruments. Retrieved 28 March 2015.